HymenopteraMine Documentation

Release v1.5

Aditi Tayal, Deepak Unni, Colin Diesh, Chris Elsik, Darren Hagen

Table of Contents

1	Overview of HymenopteraMine	3
2	2.2.3 Customize output 2.2.4 Optional filters 2.3 QueryBuilder 2.3.1 Model browser 2.3.2 Examples 2.3.2 Examples 2.3.2.1 Example 1: Querying for protein coding genes	5 6 9 10 10 11 11 13 13 15
	exons	15 19
3	3.1 Summary 3.2 Alias and DBxref 3.3 Transcript 3.4 Proteins 3.5 Function 3.6 Homology 3.7 Publications	23 23 25 25 26 27 28 30 30
4	4.1 Creating Lists	31 31 34
5	MyMine	35
6	API	37
7	Data Sources	39

8	BLAST	41
9	How to Cite	43

HymenopteraMine is an integrative resource for genomic data on Hymenoptera, including honeybees, ants, wasps, etc. Powered by InterMine, it provides a user-friendly way to access genomic, proteomic, interaction and literature data. HymenopteraMine is a part of the Hymenoptera Genome Database.

This tutorial is aimed at giving users an introduction to the different parts of HymenopteraMine and how users can make the most of HymenopteraMine.

Main site: http://hymenopteragenome.org/hymenopteramine

List of available datasets in HymenopteraMine: http://hymenopteragenome.org/hymenopteramine/dataCategories.do

Table of Contents 1

2 Table of Contents

Overview of HymenopteraMine

Below is a brief summary of the layout of HymenopteraMine:

Home – The home page for HymenopteraMine.

Templates – List of templates that users may select from based on the nature of their query.

Lists – Allows users to upload lists of genes and perform enrichment analyses. Logged-in users may save their lists for future use.

QueryBuilder – Allows users to build custom queries by browsing the HymenopteraMine data model and customize their results. The queries may be exported to a number of formats including XML.

Regions – Genomic Region Search page where users may enter genomic coordinates and fetch features that fall within the interval. The interval may be extended to increase the range of search.

Data sources – Table of all data sources with their links, date of download, and related publication(s).

Help- Links to the HymenopteraMine tutorial.

API – Describes the InterMine API that allows users to programmatically access HymenopteraMine.

HGD Blast – Links to a Blast page where users may BLAST their sequence(s) of interest with the Hymenoptera species reference genome, CDS sequences, and protein sequences.

MyMine – Once users are logged in, MyMine serves as portal for accessing saved lists and saved templates. Users may also check their account details and manage their account using MyMine.

HymenopteraMine Documentation, Release v1.5					

Searching in HymenopteraMine

There are several ways that users may query HymenopteraMine.

2.1 Quick Search

The **Quick Search** enables users to search keywords from any of the datasets on HymenopteraMine. The quick search box is located on the main page and in the upper-right corner of each page.

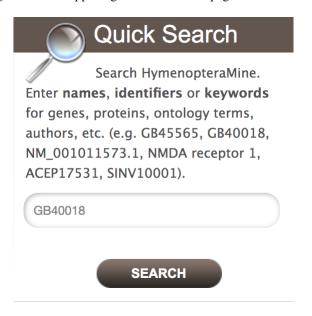


Fig. 1: Quick Search from home page

Users may enter gene names, gene identifiers, or keywords to search for within HymenopteraMine. The wildcard character * may be used to get all results matching the search query.

Fig. 2: Quick Search from any page

As an example, to search on the gene **LCCH3**, enter **LCCH3** into the quick search box and click **Search**. The results page displays a summary for the query in a tabular format.

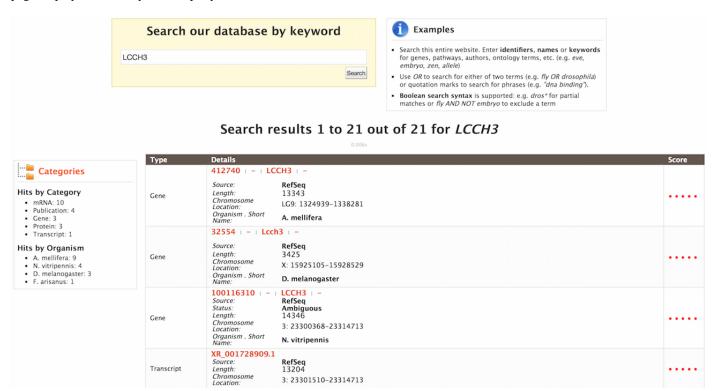


Fig. 3: Example: Search results for LCCH3

The search results may be filtered by **Category** or **Organism**. The score column in the result table indicates the similarity of the query to the result fetched by HymenopteraMine.

The results page may also be converted to a list. To enable this feature, click on **Gene** in **Hits by Category**. Select the gene(s) to be included in the list, and click on the **Create List** button just above the table of search results. Lists are described in more detail in the *Lists* section.

2.2 Templates

Another method of searching HymenopteraMine is through the use of **templates** (predefined queries). Popular templates are displayed on the home page, grouped by category (Genes, Protein, Homology, etc.) The full list of templates may be viewed by clicking the **Templates** menu tab.

As an example, the **GO Term Gene** template queries HymenopteraMine for all genes annotated with a given GO term.

The results page shows all the genes having the Gene Ontology term "DNA Binding" in their annotation. When logged

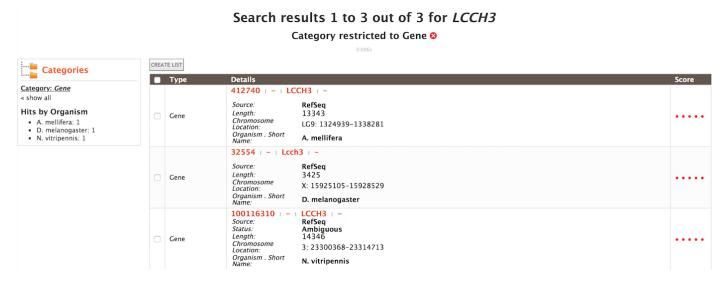
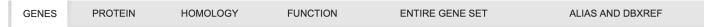



Fig. 4: Example: Search results restricted to Gene category

Gene models in HymenopteraMine come from multiple sources including NCBI RefSeq and consortium official gene sets. RefSeq data sources are labeled with 4-letter species code and "_RefSeq" in pull down menus. Consortium data sources are labeled using the original consortium official gene set names, and may have "HGD" appended, if the data source has ids assigned by HGD. Use "ALIAS AND DBXREF" templates to convert identifiers.

Query for genes:

Fig. 5: Popular templates

2.2. Templates 7

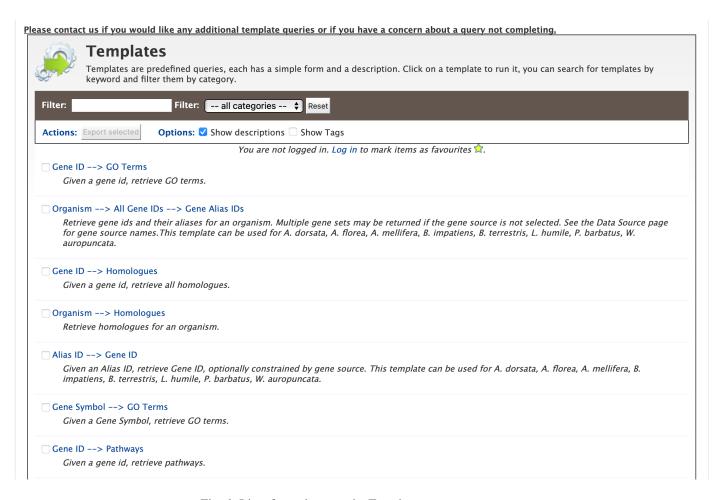


Fig. 6: List of templates on the Templates page

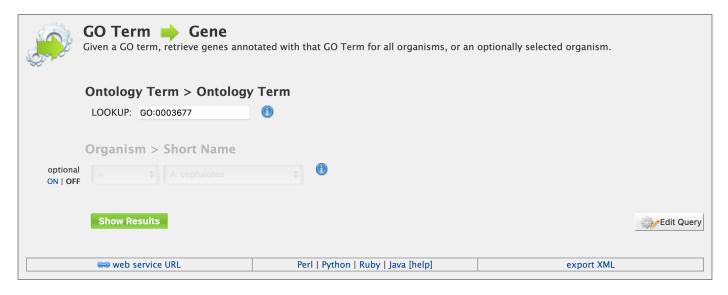


Fig. 7: Example: GO Term Gene template

in, users may create a new list or add these genes to an existing list to perform further analyses. Click on the **Save as List** button above the table of results, then choose the column to add to the list. See the *Lists* section for more details on creating and saving lists.

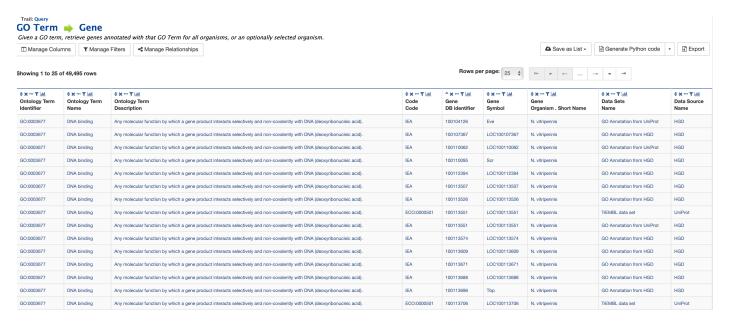


Fig. 8: Example: Results after searching on GO:0003677 (identifier for GO term "DNA binding")

2.2.1 Generate query code

The code for each query may be obtained by clicking on the arrow next to **Generate Python Code** and choosing the desired language from the pull-down menu. The language options are Python, Perl, Java, Ruby, JavaScript, and XML.

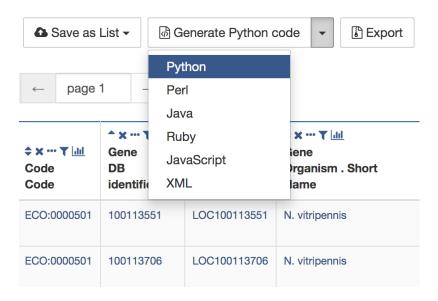


Fig. 9: Generate code options

2.2. Templates 9

Download results for GOterm genes all organisms

2.2.2 Download results

The search results may also be downloaded by clicking the **Export** button above the table and choosing the desired format from the pull-down menu to the right of the File name field (blue box in the figure below). Available formats are tab-separated values, comma-separated values, XML, and JSON. When the results contain genomic features, they may also be downloaded in FASTA, GFF3, or BED format. Other options may be specified in the submenu to the left of the download box (orange box in the figure below). By default, all rows and all columns are downloaded, but individual columns may be included or excluded by clicking on the toggles next to the column headers in the **All Columns** submenu. The number of rows and row offset are set in the **All Rows** submenu. Download the results as a compressed file by choosing GZIP or ZIP format in the **Compression** submenu (default is **No Compression**). Column headers are not added by default but may be included under the **Column Headers** submenu. Finally, the **Preview** submenu displays the first three rows of the file to be downloaded so that the desired format and options may be finalized before beginning the download. When ready, click the **Download file** button to download the results.

File name Download TSV file GOterm_genes_all_organisms .tsv ¬ All Columns Tab separated values. A flat file format suitable for spreadsheet programmes **All Rows** R Comma separated values. No Compression </> XML **Destination** {}JSON No Column Headers Download file Send to Galaxy FASTA sequence. Preview GFF3 features. BED locations. Close Download file

Fig. 10: Download results options

2.2.3 Customize output

Click the **Manage Columns** button to customize the results table layout. Edit or remove active filters by clicking the **Manage Filters** button. Click **Manage Relationships** to specify the entity relationships within the query.

2.2.4 Optional filters

Some templates have optional filters that are disabled by default. For example, the GO Term Gene template has an additional filter for specifying an organism. To enable this filter, click **ON** below **optional**.

Note: The Query trail link at the top of the page does not work for templates with optional filters. To edit the template query, navigate back to the template page either by clicking on the template name at the top of the query results page or by selecting the template from the Templates tab.

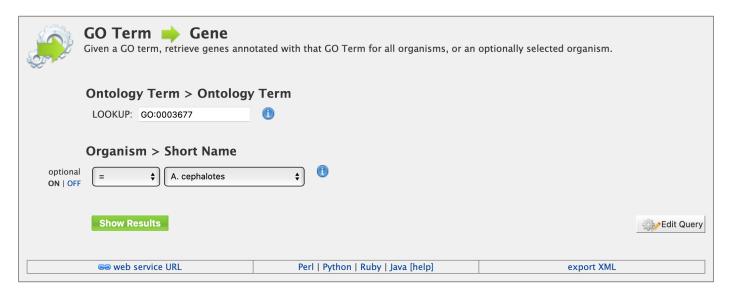
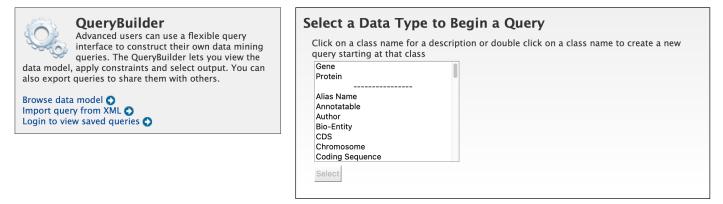



Fig. 11: Example: GO Term Gene template with organism filter enabled

2.3 QueryBuilder

While the templates provided are suitable for many different types of searches, new queries may be built from scratch using the **QueryBuilder**. The possibilities of queries using the QueryBuilder are endless. The output may be formatted exactly as desired, and the query constraints may be chosen to perform complex search operations.

To begin, select a **Data Type**. For example, select **Gene** as a Data Type and click the **Select** button.

2.3.1 Model browser

After choosing a data type, the **Model browser** appears displaying the attributes for the selected feature class.

Using the model browser, fields and constraints may be added to the query. Clicking **Show** to the right of an attribute will add that field to the query. Clicking **Constrain** brings up a window with filter options for the attribute selected. The **Query Overview** summarizes the current state of the query; it displays the currently selected fields and constraint logic. The results columns are displayed at the bottom of the page, where they may be rearranged or removed.

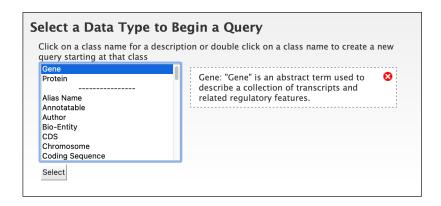


Fig. 12: Example: Gene data type selected in QueryBuilder

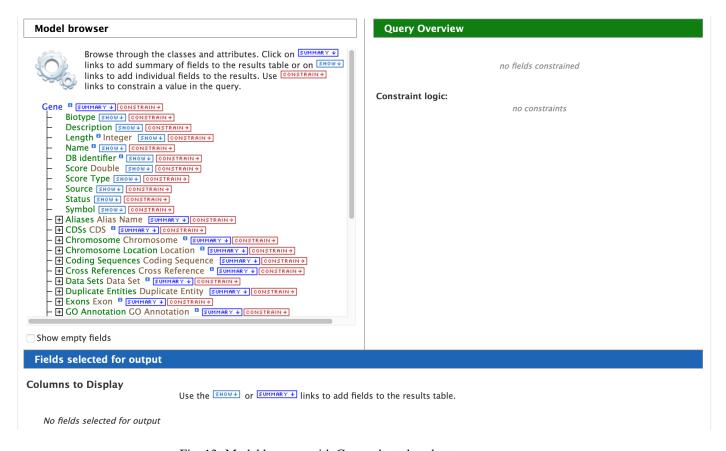


Fig. 13: Model browser with Gene selected as data type

2.3.2 Examples

The following examples give a more in-depth demonstration on how to use the QueryBuilder. All examples use Gene as the selected data type.

2.3.2.1 Example 1: Querying for protein coding genes

In the Model browser, click **Show** next to **DB Identifier** and **Symbol**, which will add these fields to the query. Notice that these two fields appear below Gene in the **Query Overview** section and at the bottom under **Fields selected for output**.

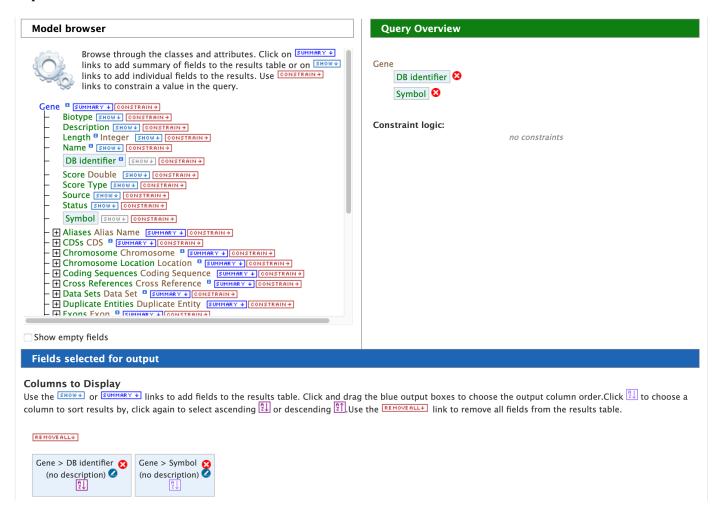


Fig. 14: Step 1: Select fields to be added to the query

Then click **Constrain** next to **Biotype**. The first drop-down menu defaults to = (equals sign). In the second drop-down menu, select **Protein Coding**, then click the **Add to query** button. This adds a constraint to the query to search only for protein coding genes. Notice that the Query Overview section now shows "Biotype = Protein Coding". Also, two types of icons appear next to the attributes. Clicking on the red "X" icon next to an attribute will remove that field or constraint from the query. Clicking on the blue pencil icon next to a constraint brings up the constraint editing window from earlier where changes may be made to the query filters.

Finally, click on the **Show results** button above the Model browser. The resulting table contains all protein coding genes in the database, with DB Identifier and Gene Symbol as the two table columns.

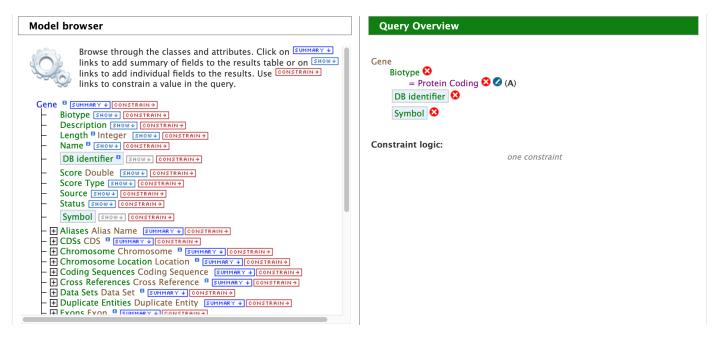


Fig. 15: Step 2: Add a constraint to the query on Biotype

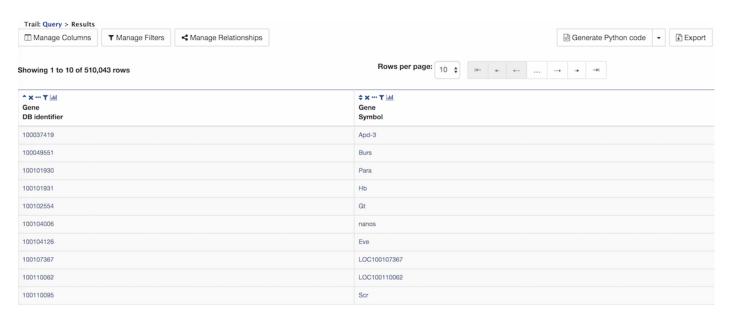


Fig. 16: Step 3: Display query results

2.3.2.2 Example 2: Querying for protein coding genes on a particular chromosome

This example will extend the first example to add another constraint to the query.

After running the query in the above example, click on **Query** at the top of the page next to **Trail** to go back to the model browser and edit the query.

Fig. 17: Click on the query trail to edit the query

In the Model browser, click the + (plus sign) next to the Chromosome feature class to display its attributes.

```
Model browser
   - Chromosome Chromosome ■ SUMMARY + CONSTRAIN+
       Assembly SHOW ↓ CONSTRAIN →
       Length Integer SHOW → CONSTRAIN →
       Name SHOW + CONSTRAIN +
       DB identifier SHOW + CONSTRAIN +
       Secondary Identifier SHOW → CONSTRAIN →
       Tertiary Identifier SHOW → CONSTRAIN →
     + Data Sets Data Set B SUMMARY + CONSTRAIN+
     + Located Features Location SUMMARY + CONSTRAIN +
     - ★ Sequence Sequence Sequence
     - 🛨 Sequence Ontology Term SO Term 🏮 SUMMARY 📲 CONSTRAIN 🗲
   + Chromosome Location Location SUMMARY + CONSTRAIN +
   + Coding Sequences Coding Sequence SUMMARY + CONSTRAIN +
   + Cross References Cross Reference SUMMARY + CONSTRAIN +

    Duplicate Entities Duplicate Entity | SUMMARY → CONSTRAIN → |

   + Exons Exon Summary + Constrain →
   + GO Annotation GO Annotation  

SUMMARY ◆ CONSTRAIN →

    Homologues Homologue    SUMMARY    CONSTRAIN →
   + Locations Location  SUMMARY → CONSTRAIN →
   - 

Pathways Pathway 

SUMMARY 

CONSTRAIN →
```

Fig. 18: Step 1: View attributes of the Chromosome feature class

Then click **Constrain** next to the attribute **DB Identifier**. In the pop-up window, enter **NW_003791143.1** into the text field, and click **Add to query**. This adds an additional constraint to the query that searches for protein coding genes on a chromosome with the DB identifier *NW_003791143.1*.

Click the **Show results** button as before to view the results of the query. The columns are the same as in the first example, but notice that now there are only 625 rows in the table (compared to over 500,000 in the first query) due to the additional constraint.

2.3.2.3 Example 3: Querying for protein coding genes on a particular chromosome and their exons

This final example extends the above query to display all exons for each protein coding gene.

As above, click on **Query** at the top of the results page to go back to the model browser and edit the query.

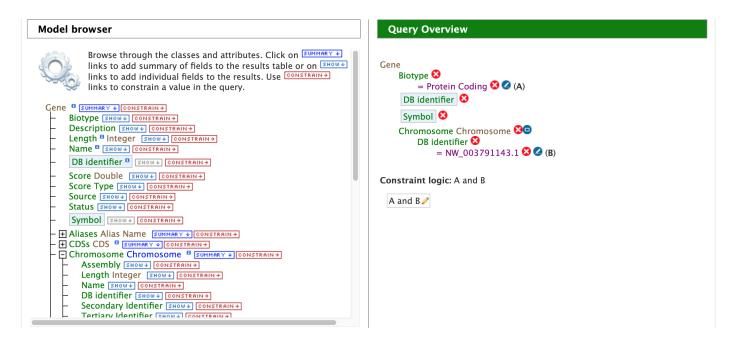


Fig. 19: Step 2: Add a constraint to the Chromosome DB Identifier

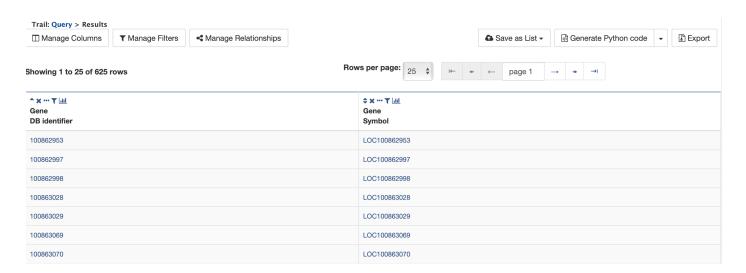


Fig. 20: Step 3: Display query results

In the Model browser, scroll down to locate the **Exon** feature class, and click the + (plus sign) next to Exons to display its attributes. Click **Show** next to **DB Identifier** and **Length**.

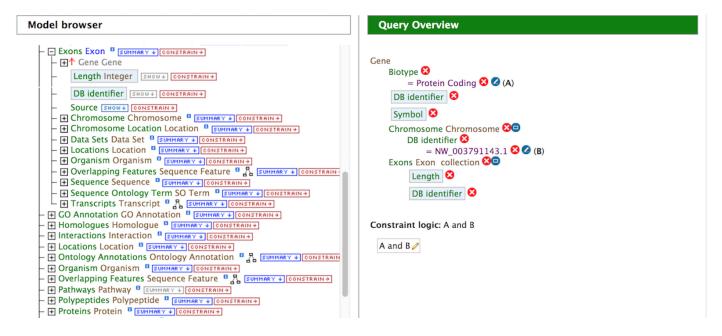


Fig. 21: Step 1: Select Exon fields to be added to the query

The **Query Overview** shows the query in progress, with four fields and two constraints. Also notice that a third type of icon, a blue square, appears next to a couple of the attributes. Clicking on a blue square icon next to an attribute brings up a window where the query **Join Style** may be modified. Click on the blue square icon next to **Exon collection** to bring up the Switch Join Style window. The default option is **Show only Genes if they have a Exon**. Change this to **Show all Genes and show Exons if they are present** and click **Add to query**.

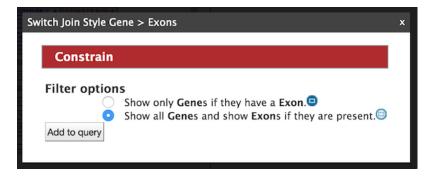


Fig. 22: Step 2: Change the join style

Click **Show results** to run the query.

Notice that the results table contains the same rows as in the second example, but now there is a new column, **Gene Exons**. For example, looking at the second row, the Gene with DB Identifier 100862997 has 12 exons. Click on the **12** exons text to expand the table with additional rows containing the DB identifier and Length for each of the 12 exons.

By changing the join style, the exons have been grouped together by gene, making it easier to see how many exons each gene has. By contrast, if the query is run with the default option of "Show only Genes if they have a Exon", the results table adds a new row for each exon.

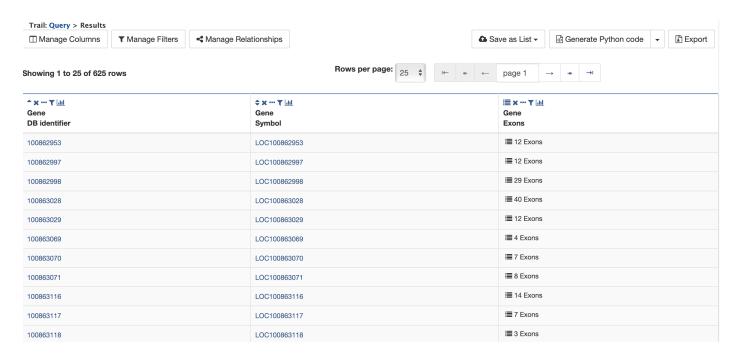


Fig. 23: Step 3: Display query results

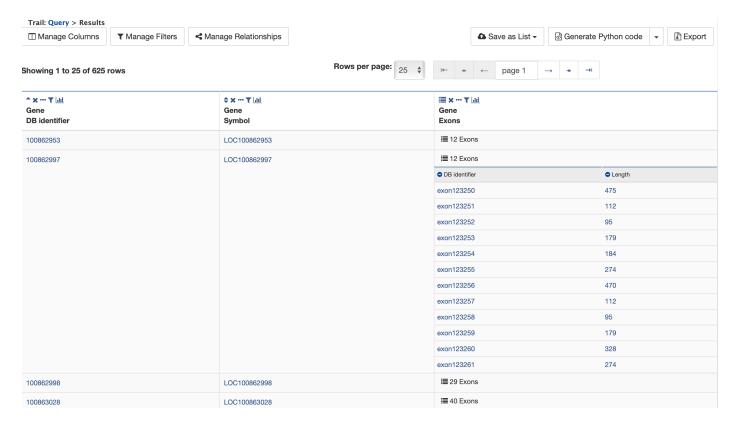


Fig. 24: Step 4: Expand information on exons

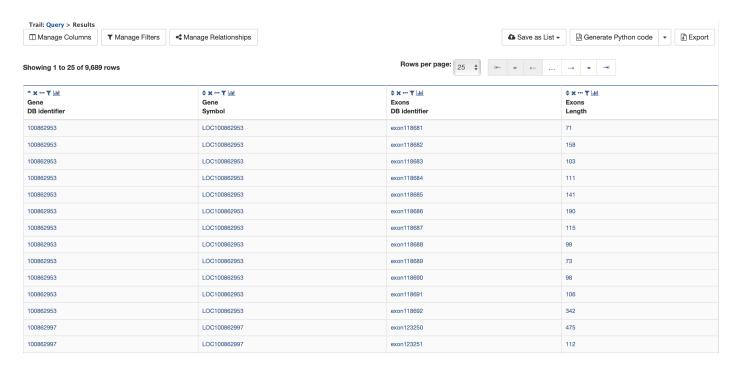


Fig. 25: Same query with default join style for exons

2.4 Genomic Regions Search

The **Genomic Regions Search** is a tool to fetch features that are within a given set of genomic coordinates or are within a given number of bases flanking the coordinates.

To begin this type of search, click the **Regions** tab on the menu. A form will appear asking for the search parameters (organism, feature types, genomic coordinates, etc.)

The coordinates must have one of three formats:

- 1. chromosome name:start..end
- 2. chromosome name:start-end
- 3. chromosome name start end (tab delimited)

Click on the input examples to view a representative set of coordinates in each format. Click the **Genome coordinates help** text near the top of the form for more detailed information on the input format requirements.

The regions may be extended on either side of the genomic coordinates using the slider or the text field next to it. There is also the option to perform a strand-specific region search using the checkbox at the bottom of the form.

As an example, select **A. mellifera** from the **Select Organism** drop-down, check the box next to **Gene** in the **Select Feature Types** section, and enter the following coordinates into the genomic regions search text field:

```
LG5:900000..930000
```

Then click **Search**. The search results page presents a list of features present within the genomic interval that was entered. In this case, the feature type was limited to Gene. The results may be exported as tab-separated or commaseparated values. If they contain genomic features, there is also the option to saved the results in GFF3 or BED format. The FASTA sequences of the features may also be downloaded.

Overla	p features	s search	from a r	new list	of Gen	omic Regio	ons
Search for f	features that overlap	a list of genome c	oordinates you e	nter or upload, e	.g. LG5:9000 0	00930000	
Genome co	ordinates help						
1.	Select Organism: A	mellifera					
2.	Select Feature Ty	pes:					
	CDS •		mRNA ¹			□ tRNA [□]	
	Exon •		_ ,	ranscript ¹¹		Transcript •	
	Gene •		□ rRNA □				
	(example for input f (example for input f (example for tab de or Upload genomic Choose File no file	format chr:1-1000 limited input form)▼ at)▼		4		
4.	Extend your regions	at both sides:					
	a	1k	10k	100k	1M	10M	
	0			<u> </u>			
5.	Check this box to end <start)< td=""><td>perform a strand-</td><td>-specific region s</td><td>earch (search + s</td><td>strand if region</td><td>n start<end; -<="" search="" td=""><td>strand if region</td></end;></td></start)<>	perform a strand-	-specific region s	earch (search + s	strand if region	n start <end; -<="" search="" td=""><td>strand if region</td></end;>	strand if region
	enu (start)						
							Reset Search

Fig. 26: Genomic regions search form

	p features s						ns
6	out of the first						
Genome cod	ordinates help						
1.	Select Organism: A. me	llifera	•				
2.	Select Feature Types:						
	CDS •		mRNA •			tRNA ⁸	
	Exon •		Primary Tran	script ⁰		Transcript •	
	✓ Gene [□]		rRNA •				
	(example for input form (example for input form (example for tab delimit LG5:900000930000	at chr:1-1000 ved input format)			4		
	or Upload genomic region Choose File no file sele		e				
1	Extend your regions at I	ooth sides:					
٦.	Exteria your regions at i	1k	10k	100k	1M	10M	
	0						
5.	Check this box to per end <start)< td=""><td>form a strand-sp</td><td>ecific region sear</td><td>ch (search + stra</td><td>and if region</td><td>start<end; -="" search="" str<="" td=""><td>and if region</td></end;></td></start)<>	form a strand-sp	ecific region sear	ch (search + stra	and if region	start <end; -="" search="" str<="" td=""><td>and if region</td></end;>	and if region
							Reset

Fig. 27: Example: Genomic regions search on A. mellifera

Fig. 28: Example: Genomic regions search results

mentation, Rele		

Report Pages

Every object (e.g., Gene, Protein, Exon) in HymenopteraMine has a report page. The layout of the report page depends on the data available for the object. Report pages may be accessed by clicking on an object name in the results table after running a query.

As an example, on the home page of HymenopteraMine, click on the **Protein** tab in the **Popular Templates** section. (Refer to the *Templates* section for more details on using templates to search the database.) Click on the **Gene Symbol** -> **Proteins** template. In the text field, enter **LCCH3**, and select **A. mellifera** as the Organism. Then click **Show Results**.

Notice that each item in the results table is a hyperlink. Hover over an item to bring up a quick summary window for that item. For example, hover over **LCCH3** to view a summary of the gene with this symbol. The summary contains the gene's biotype, database identifier, description, length, organism, symbol, and source. Similarly, hover over **Q0GQR5_APIME** to view a summary of the protein with this DB Identifier.

Clicking on an item in the table rather than just hovering over it will bring up its report page. For example, click on LCCH3 in the Gene Symbol column to view its report.

The report page provides a complete description for this gene. The header displays the database identifier, followed by the information from the summary window for the gene (organism, symbol, source, etc.) **Biotype** indicates the type of gene; in this case the type is protein coding.

The contents of the report page are divided into categories based on the type of information provided.

3.1 Summary

A **Summary** section near the top of the report provides information on the gene such as its length, chromosome location, and strand information.

Genome feature			
Region:	gene ⁰	Length:	13343
Location:	LG9:1324939-1338281 reverse strand		

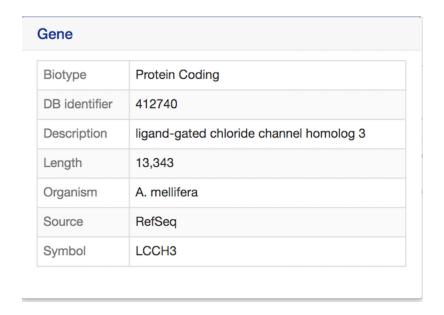


Fig. 1: Example: Summary window for LCCH3

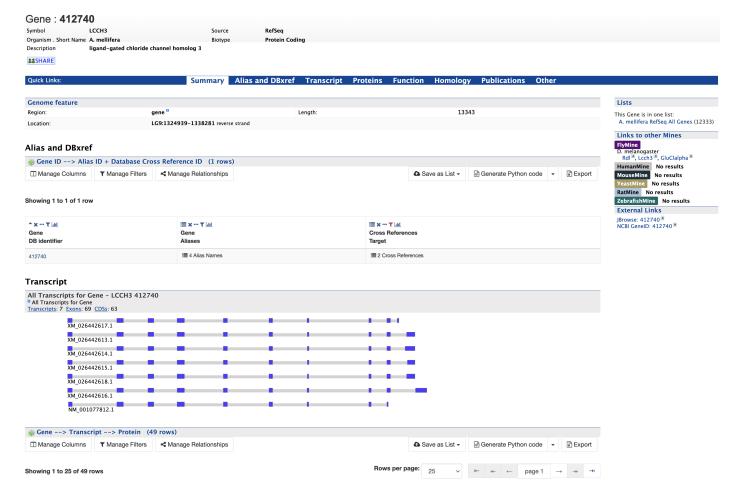
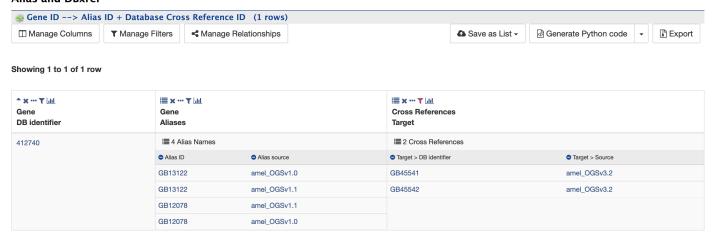
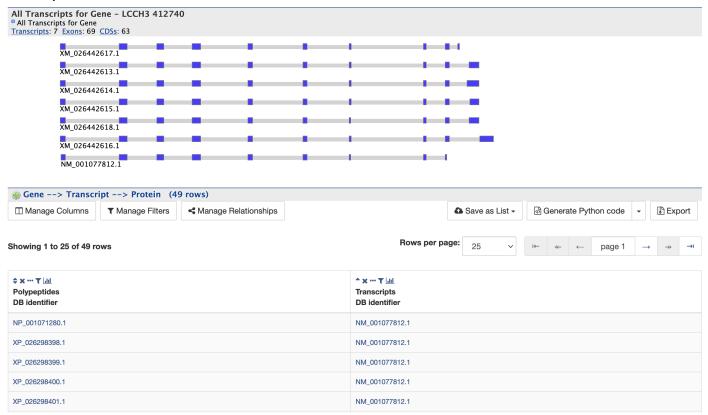



Fig. 2: Report page

3.2 Alias and DBxref

The **Alias and DBxref** section displays a table of aliases and database cross references for the gene. In this example, the gene with DB Identifier 412740 has four aliases and two cross references. Click on the text **4 Alias Names** and **2 Cross References** to expand the table with additional rows containing the ID and Source for each alias and DB Identifier and Source for each cross reference.

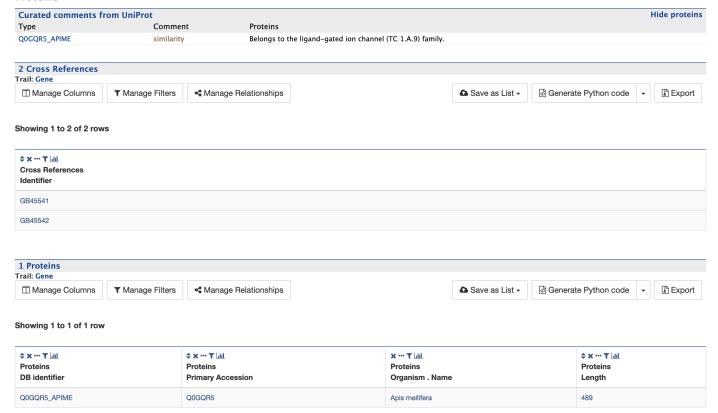
Alias and DBxref



3.3 Transcript

The **Transcript** section contains information about the gene model, such as transcripts, exons, etc. It includes a diagram visually representing each transcript with its features highlighted (if applicable). In the case of protein coding genes, a table with protein information is also provided.

3.2. Alias and DBxref 25

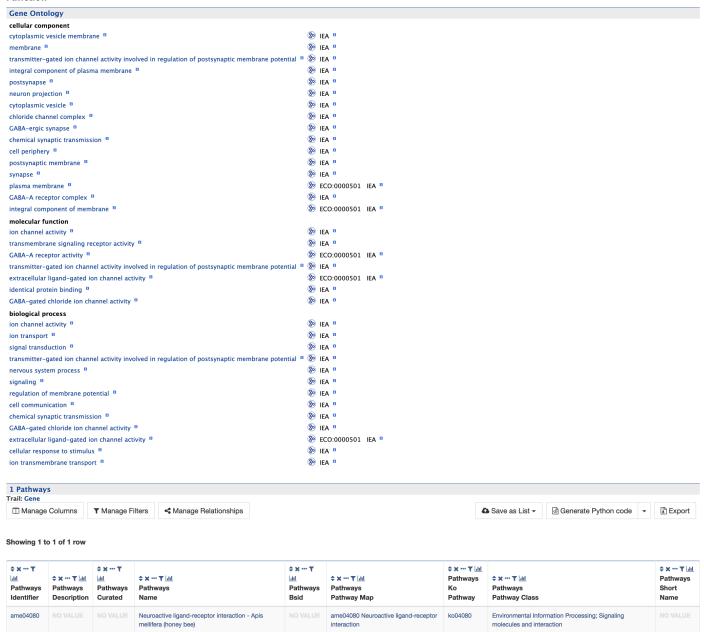

Transcript

3.4 Proteins

The **Proteins** section provides information about the protein product of gene. The comments section gives a brief description about the protein along with the UniProt accession.

Proteins

3.5 Function


The Function section displays Gene Ontology annotations for a gene. Annotations are divided into three categories:

- · Cellular Component
- · Molecular function
- · Biological process

The GO terms are displayed along with the evidence code indicating how the annotations were derived. If applicable, a table of information on Pathways is also shown.

3.5. Function 27

Function

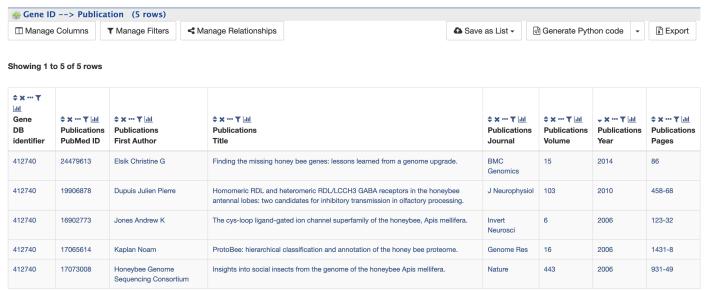
3.6 Homology

The **Homology** section includes information on homologues for the gene.

Homology

Showing 1 to 25 of 338 rows

Homologues	
A. cephalotes	LOC105618116
A. cerana	LOC107995555
A. colombica	LOC108686942 LOC108691567 LOC108687631
A. dorsata	LOC102678684
A. echinatior	LOC105154584 LOC105149353 LOC105145387
A. florea	LOC100871112
A. rosae	LOC105691160 LOC105691302 LOC105690746
B. bifarius	LOC117211906
B. impatiens	BIMP19786 BIMP15224 LOC100740476 BIMP16483
B. terrestris	LOC100644703
B. treatae	LOC1171772688
B. vancouverensis nearcticus	LOC117165961
B. vosnesenskii	LOC117239043
C. calcarata	LOC108632131 LOC108629559 LOC108627775
C. cinctus	LOC107262848 LOC107264860 LOC107272752
C. costatus	LOC108772025 LOC108773013 LOC108778372
C. floridanum	LOC106646337 LOC106641367 LOC106642283 LOC106643136 LOC106635744
C. floridanus	LOC105255134 LOC105255944 LOC105248902
C. insularis	LOC118065548
C. obscurior	Cobs_08353 Cobs_14722 Cobs_11662
C. solmsi marchali	LOC105364972 LOC105360539 LOC105362838
D. alloeum	LOC107046645 LOC107043876 LOC107046261 LOC107046593
D. melanogaster	GluClalpha Rdl Lcch3
D. novaeangliae	LOC107194170 LOC107187561 LOC107193885
D. quadriceps	LOC106750929 LOC106749525 LOC106749678
E. mexicana	LOC108554687 LOC108547134 LOC108549167
F. arisanus	LOC105263612 LOC105264309 LOC105267836
F. exsecta	LOC115234995
H. laboriosa	LOC108571111 LOC108570436 LOC108570653
H. saltator	LOC105192239 LOC105182093 LOC105186749
L. albipes	LALB18529 LALB16844 LALB20630 LALB20629
L. humile	LOC105667704 LOC105671992 LOC105678045
M. demolitor	LOC103572802 LOC103568640
M. genalis	LOC117227114
M. pharaonis	LOC105836172 LOC105831134 LOC105839323
M. quadrifasciata	MQUA10111 WN51_08026 MQUA19292 MQUA18245
M. rotundata	LOC100883591 LOC100882308 LOC100883102
N. fulva	LOC114945379
N. lecontei	LOC107218826 LOC107220656 LOC107216469
N. melanderi	LOC116429191
N. vitripennis	LOC100116688 LCCH3 GluCI
O. abietinus	LOC105699045 LOC105699375 LOC105699763
O. bicornis bicornis	LOC114873402
O. biroi	LOC105286156
O. brunneus	LOC116842266
O. lignaria	LOC117609463
P. barbatus	LOC105428153 LOC105423658 LOC105433259
P. canadensis	LOC106790521 LOC106783657 LOC106786215
P. dominula	LOC107069426
P. gracilis	LOC109860178 LOC109862073 LOC109863815
S. invicta	LOCI05194445 LOC105199392 LOC105203964
T. cornetzi	LOC108768409
T. curvispinosus	LOC112456292
T. pretiosum	LOC106660520 LOC106652593 LOC106650505
T. septentrionalis	LOC108747081 LOC108749946 LOC108746332
T. zeteki	LOC108724512
V. emeryi	LOC10552681 LOC10556628 LOC105567127
W. auropunctata	LOCIO3502681 LOCIO3506028 LOCIO3507127 LOCIO5455966 LOCIO5449299 LOCIO5448904
un opuliciata	ECCLOS 155500 ECCLOS 1 15E33 ECCLOSTRUSUR
Gene ID> Homologues (338 rows)	
	onships
☐ Manage Columns	onships


♣ x ··· ▼ litil Gene DB identifier		≎ x ··· ▼ lati Gene Organism . Short Name	≎ x ··· Y lall Homologues Homologue . Primary Identifier	≎x····▼ l <u>iil</u> Homologues Homologue . Organism . Short Name	★ * ** ▼ Idd Homologues Type	÷ x ··· ▼ ldd Homologues Last Common Ancestor
412740	LCCH3	A. mellifera	100116310	N. vitripennis	orthologue	Holometabola
412740	LCCH3	A. mellifera	100116310	N. vitripennis	orthologue	Holometabola
412740	LCCH3	A. mellifera	100116310	N. vitripennis	orthologue	Hymenoptera
3.6. Hom	ology	A. mellifera	100116310	N. vitripennis	orthologue	Hymeno 29
412740	LCCH3	A. mellifera	100116668	N. vitripennis	orthologue	Holometabola
412740	LCCH3	A. mellifera	100116853	N. vitripennis	orthologue	Holometabola
412740	LCCH3	A. mellifera	100644703	B. terrestris	orthologue	Aculeata

Rows per page: $_{25}$ $_{\lor}$ $_{!\leftarrow}$ $_{\twoheadleftarrow}$ $_{\leftarrow}$ page 1 $_{\rightarrow}$ $_{\twoheadrightarrow}$ $_{\rightarrow}$

3.7 Publications

The Publications section displays a table of publications related to the gene.

Publications

3.8 Other

This last section provides miscellaneous information that doesn't fit into any of the above categories, e.g., data sets including a gene, protein domain regions for a protein, etc.

Lists

4.1 Creating Lists

Users may create and save lists of features, such as gene IDs, transcript IDs, gene symbols, etc. The list tool searches the database for the list items and attempts to convert each identifier to the selected type. Click on the **Lists** tab from the menu to access the full list upload form. A short version of the form is also in the **Quick List** box on the home page.

As an example, enter the following identifiers (comma-separated):

```
GB41586, Sec61Beta, TRAM, Mocs1, mal
```

Leave the **Select Type** as "Gene" and **Organism** drop-down as "Any". Then click **Create List**. A Summary table is displayed with the results of searching for each of the five identifiers in the list.

Next, click **Save a list of 5 Genes**. A **List Analysis** page is presented that contains widgets allowing users to perform analyses on the genes in the list.

The available widgets are:

- 1. Chromosome Distribution
- 2. Gene Ontology Enrichment
- 3. Protein Domain Enrichment
- 4. Publication Enrichment
- 5. Pathway Enrichment
- 6. Orthologues

The selection of widgets provided on the List Analysis page depend on the contents of the list. In the above example, three widgets appear: Gene Ontology Enrichment, Publication Enrichment, and Pathway Enrichment.

Read the Important Notes for Enrichment Widgets for special instructions to avoid false positives.

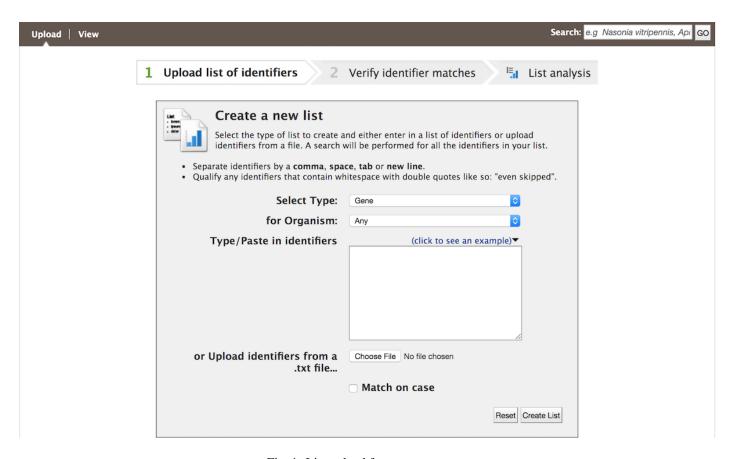


Fig. 1: List upload form

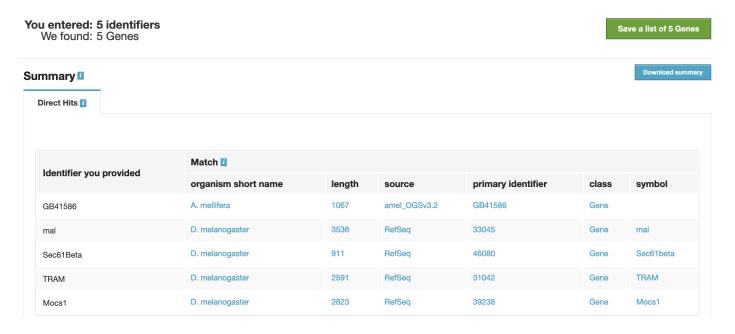
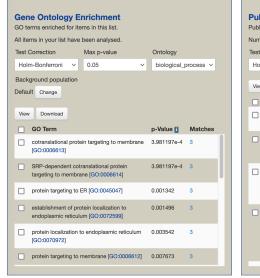
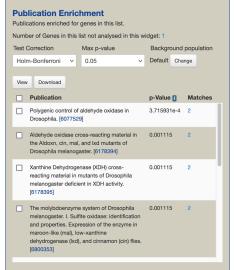


Fig. 2: Example: Search results for list of five identifiers

32 Chapter 4. Lists

Showing 1 to 5 of 5 rows


\$ x ··· ▼ dil Gene DB identifier		≑ x ··· ▼ - -					\$ ★ ··· ▼ did Gene Organism . Short Name
31042	NO VALUE	TRAM	NO VALUE	RefSeq	NO VALUE	2591	D. melanogaster
33045	NO VALUE	mal	NO VALUE	RefSeq	NO VALUE	3536	D. melanogaster
39238	NO VALUE	Mocs1	NO VALUE	RefSeq	NO VALUE	2823	D. melanogaster
46080	NO VALUE	Sec61beta	NO VALUE	RefSeq	NO VALUE	911	D. melanogaster
GB41586	NO VALUE	NO VALUE	NO VALUE	amel_OGSv3.2	NO VALUE	1067	A. mellifera


Fig. 3: Example: List analysis for gene list

Important Notes for Enrichment Widgets to avoid false positives:

1. If your gene list contains genes from more than one gene set (e.g. ACP3.21, ACP4.4 and/or RefSeq), it is critical that you create new lists for each specific gene set and then redo the analyses separately by clicking the newly saved lists on your List View page, above for a particular gene set using the histogram icon above the Gene Source column in the table above. Then "Save as List".

2. You should change the background population from the default to one of the available gene sets or your own background gene list.

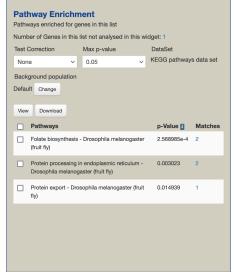


Fig. 4: Example: Available widgets

4.1. Creating Lists 33

4.2 Saving Lists

Saved lists appear under the **View** tab on the Lists page. For users who are not logged in, lists are saved temporarily; users must log in to save lists permanently. Saved lists may also be accessed from the **MyMine** menu item.

Predefined lists of all genes from different species are also available on the Lists page for all users.

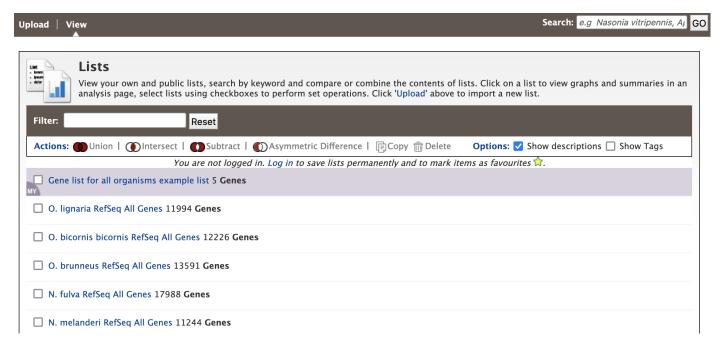


Fig. 5: Saved lists. Lists belonging to user are highlighted.

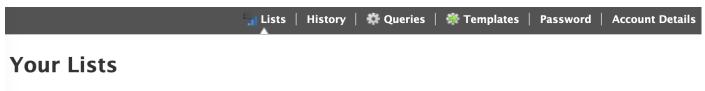
34 Chapter 4. Lists

MyMine

MyMine serves as a portal where logged-in users may manage their lists, queries, templates, and account details.

To access MyMine, click on the **MyMine** menu tab. A submenu appears with six options:

Lists - Saved lists.

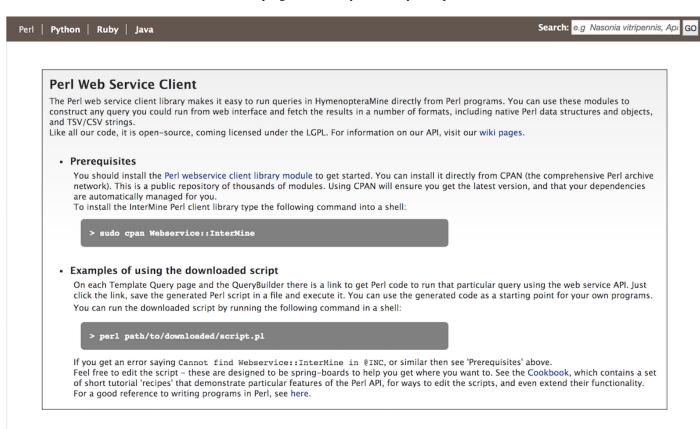

History - List of queries recently run.

Queries - List of saved queries.

Templates - Templates created or marked as "Favorite".

Password - Password reset form.

Account Details - User preferences form.



	LIST NAME	DESCRIPTION	♦ TYPE	NUMBER OF OBJECTS	DATE CREATED
	Gene list for all organisms example list Add tags Share with users		Gene	5 values	2021-06-03 19:42
Delete	Сору				

Fig. 1: MyMine

API

An API is available for users who would like to programmatically access HymenopteraMine.

Perl, Python, Ruby, and Java are the languages supported by the InterMine API.

For more detailed information, view the InterMine documentation.

38 Chapter 6. API

$\mathsf{CHAPTER}\ 7$

Data Sources

The Data Sources table provides a description of the datasets that are integrated into HymenopteraMine, along with their date of download, version or release, citations wherever applicable, and any additional comments.

Data Category	Data	Organism	Source	PubMed	Link
		Acromyrmex echinatior	aech_OGSv3.8	Nygaard et al. – PubMed: 21719571	HGD OGS GFF3 Download
		Apis mellifera	amel_OGSv3.2	Elsik et al. – PubMed: 24479613	HGD OGS GFF3 Download
		Atta cephalotes	acep_OGSv1.2	Suen et al. – PubMed: 21347285	HGD OGS GFF3 Download
		Bombus impatiens	bimp_OGSv1.0	Sadd et al. – PubMed: 25908251	HGD OGS GFF3 Download
		Camponotus floridanus	cflo_OGSv3.3	Bonasio et al. – PubMed: 20798317	HGD OGS GFF3 Download
	Consortium Official Gene Set	Cardiocondyla obscurior	cobs_OGSv1.4	Schrader et al. – PubMed: 25510865	HGD OGS GFF3 Download
		Dufourea novaeangliae	Dufourea_novaeangliae_v1.1	Kapheim et al. – PubMed: 25977371	HGD OGS GFF3 Download
		Eufriesea mexicana	Eufriesea_mexicana_v1.1	Kapheim et al. – PubMed: 25977371	HGD OGS GFF3 Download
		Habropoda laboriosa	Habropoda_laboriosa_v1.2	Kapheim et al. – PubMed: 25977371	HGD OGS GFF3 Download
		Harpegnathos saltator	hsal_OGSv3.3	Bonasio et al. – PubMed: 20798317	HGD OGS GFF3 Download
		Lasioglossum albipes	lalb_OGSv5.42	Kocher et al. – PubMed: 24359881	HGD OGS GFF3 Download
		Linepithema humile	lhum_OGSv1.2	Smith et al PubMed: 21282631	HGD OGS GFF3 Download
		Megachile rotundata	Megachile_rotundata_v1.1	Kapheim et al. – PubMed: 25977371	HGD OGS GFF3 Download
		Melipona quadrifasciata	Melipona_quadrifasciata_v1.1	Kapheim et al PubMed: 25977371	HGD OGS GFF3 Download
		Nasonia vitripennis	nvit_OGSv1.2	Werren JH et al PubMed: 20075255	HGD OGS GFF3 Download
			Nvit_EviGene	Werren JH et al. – PubMed: 20075255	HGD OGS GFF3 Download
		Ooceraea biroi	armyant.OGS.V1.8.6	Oxley PR et al. – PubMed: 24508170	HGD OGS GFF3 Download

Fig. 1: Data sources table

BLAST

Users may perform BLAST queries against the Hymenoptera genomic, CDS, or protein sequences using the BLAST page.

SequenceServer 1.0.9 Paste query sequence(s) or drag file containing query sequence(s) in FASTA format here \dots Nucleotide databases Protein databases Acromyrmex_echinatior_GCF_000204515.1_Aech_3.9_genome.fa Acromyrmex_echinatior_GCF_000204515.1_Aech_3.9_AR100_RefSeq_protein.fa Apis_cerana_GCF_001442555.1_ACSNU-2.0_genome.fa $\begin{tabular}{ll} \blacksquare Apis_cerana_GCF_001442555.1_ACSNU-2.0_AR101_RefSeq_protein.fa \end{tabular}$ Apis_dorsata_GCF_000469605.1_Apis_dorsata_1.3_genome.fa ☐ Apis_dorsata_GCF_000469605.1_Apis_dorsata_1.3_AR101_RefSeq_protein.fa Apis_florea_GCF_000184785.3_Aflo_1.1_genome.fa Apis_florea_GCF_000184785.3_Aflo_1.1_AR102_RefSeq_protein.fa Apis_mellifera_GCF_003254395.2_Amel_HAv3.1_genome.fa Apis_mellifera_GCF_003254395.2_Amel_HAv3.1_AR104_RefSeq_protein.fa Athalia_rosae_GCF_000344095.2_Aros_2.0_genome.fa $\begin{tabular}{l} \blacksquare A thalia_rosae_GCF_000344095.2_Aros_2.0_AR102_RefSeq_protein.fa \end{tabular}$ Atta_cephalotes_GCF_000143395.1_Attacep1.0_genome.fa ☐ Atta_cephalotes_GCF_000143395.1_Attacep1.0_AR100_RefSeq_protein.fa eg: -evalue 1.0e-5 -num_alignments 100 Advanced Parameters:

Fig. 1: BLAST search

42 Chapter 8. BLAST

How to Cite

Please cite the use of HymenopteraMine as follows:

Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids Research 2016 Jan 4;44(D1):D793-800. doi: 10.1093/nar/gkv1208. Epub 2015 Nov 17. PubMed PMID: 26578564.

Elsik, C., Tayal, A., Diesh, C., Unni, D., Emery, M., Nguyen, H., & Hagen, D. (2016, Jan 4). HymenopteraMine. Retrieved [Date], from http://hymenopteragenome.org/hymenopteramine/begin.do.

Please cite the use of a specific page in HymenopteraMine as follows:

Elsik, C., Tayal, A., Diesh, C., Unni, D., Emery, M., & Hagen, D. (2016, Jan 4). [Title of page]. Retrieved [Date], from [link of page].

Please cite the use of any other tools and data from the HGD website as follows:

Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids Research 2016 Jan 4;44(D1):D793-800. doi: 10.1093/nar/gkv1208. Epub 2015 Nov 17. PubMed PMID: 26578564.

In addition, please cite the use of genome consortium data with the appropriate genome consortium publication.